Individual Competition

Problem I.1. Let $n \in \mathbb{Z}_{>0}$ and let $\mathcal{M}_{n}(\mathbb{R})$ be the $n \times n$ matrices with real entries. Let $f: \mathcal{M}_{n}(\mathbb{R})^{2} \rightarrow \mathcal{M}_{n}(\mathbb{R})^{2}$ be the function $f(A, B)=(A B, B A)$.
a. Is the function f injective?
b. Is the function f surjective?
c. Find all pairs (A, B) of skew-symmetric real matrices which are a fixed point of f.

Problem I.2. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers with $a_{0}>0$ and with

$$
a_{n+1}=\frac{a_{n}}{a_{n}^{2}+a_{n}+1} \text { for all } n \in \mathbb{N} .
$$

a. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.
b. Determine $\lim _{n \rightarrow \infty} n a_{n}$.

Problem I.3. We have n coins, each of them gives the two outcomes head (H) and tail (T) after a toss, but the probabilities may be different for each coin.
We know that the probability of getting an even number of heads after a single toss of all coins is the same as getting an odd number of heads.
Must there be a fair coin among the n coins?
Problem I.4. Are there more positive integers with $\sigma(\tau(n))=n$ or more positive integers with $\tau(\sigma(n))=n$?
(The function $\tau(k)$ is the number of divisors of an integer k and the function $\sigma(k)$ is the sum of divisors of an integer k.)

Vienna Mathematics Competition

Team Competition

Problem T.1. A graph is a set V of vertices together with a set E of edges. Each edge is a set of two distinct vertices, the endpoints of the edge. We represent the vertices by points in the plan and the vertices by lines connecting the two endpoints.
The distance $\operatorname{dist}(u, v)$ between two vertices v and w is the smallest number of edges we need to traverse to get from v to w. For example, the distance of a vertex to a vertex it shares an edge with is 1 , the distance of a vertex to itself is 0 .
For a fixed natural number $n \geq 2$, we consider two graphs. The star S_{n} is the graph with vertices $V=\{1,2, \ldots, n\}$ and edges $\{\{1,2\},\{1,3\}, \ldots,\{1, n\}\}$. The path is the graph with vertices $V=$ $\{1,2, \ldots, n\}$ and edges $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$.
Show that

$$
\operatorname{det}_{1 \leq i, j \leq n}(\operatorname{dist}(i, j))
$$

gives the same result for both graphs.
Problem T.2. Evaluate

$$
\int_{0}^{\pi} \frac{x \sin x}{\sqrt{1+(\sin x)^{2}}} d x
$$

Problem T.3. Let e_{n} be the number of subsets of $\{1,2, \ldots, 2 n\}$ that contain more even than odd elements.
Determine all $n \geq 1$ such that e_{n} is odd.
Problem T.4. Let $\left(a_{n}\right)_{n}$ be the sequence with $a_{1}=2$ and

$$
a_{n+1}=a_{n}^{3}-a_{n}^{2}+1
$$

a. Show that the sequence does not contain a perfect square.
b. Show that the sequence does not contain a perfect cube.

Problem T.5. For each $Q \in \mathbb{R}[x]$, we define the vector space

$$
V_{Q}=\{P \in \mathbb{R}[x]: \operatorname{deg} P \leq 2024 \text { and } P(Q(a))=P(a) \text { for all } a \in \mathbb{R}\}
$$

What are all the possible values of $\operatorname{dim} V_{Q}$ as Q runs through all polynomials?
Problem T.6. On a blackboard, we have the numbers x_{1}, \ldots, x_{n} with $0<x_{i}<1 / n$. In each step, we choose two numbers x and y and replace them with $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}$.
After $n-1$ steps, we are left with a single number. Show that the number does not depend on which two numbers we choose in each step.

Vienna Mathematics Competition

Problem T.7. Consider functions $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(f(n)) \leq f(n+1)-f(n)$ for all $n \in \mathbb{N}$.
What is the maximal value that $f(2024)$ can take?
Problem T.8. Let $s(x)=\min _{n \in \mathbb{Z}}|x-n|$ be the distance of x to the nearest integer. Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\sum_{n=0}^{\infty} \frac{s\left(2^{n} x\right)}{2^{n}}
$$

has a maximum.
Determine the maximum.

