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Problem I.1. Let n ∈ Z>0 and let Mn(R) be the set of n× n matrices with real entries.
Let f : Mn(R)

2 → Mn(R)
2 be the function f(A,B) = (AB,BA).

a. Is the function f injective?

b. Is the function f surjective?

c. Find all pairs (A,B) of skew-symmetric real matrices which are a fixed point of f .

Solution to Problem I.1. a. The function is not injective because f(0, I) = f(I, 0) where I is
the identity matrix of size n and 0 is the zero matrix of size n.
b. The function is not surjective because tr(AB − BA) = 0, therefore, the couple (I, 0) is not in
the image of f .
Alternatively, if (AB,BA) = (I, 0), we get AB = I and therefore, BA = I 6= 0.
c. We get

A2 = (AB)A = A(BA) = AB = A,

and analogously B2 = B. Therefore, A and B are diagonalizable matrices with eigenvalues 0 and
1, but skew-symmetric matrices have only imaginary eigenvalues different from zero. Therefore,
A = B = 0 which is clearly a fixed point of skew-symmetric matrices.
Note that it is also possible to obtain and use

−A = AT = (AB)T = BTAT = (−B)(−A) = BA = B,

which makes it unnecessary to know the eigenvalues of skew-symmetric matrices.

Problem I.2. Let (an)n≥0 be a sequence of real numbers with a0 > 0 and with

an+1 =
an

a2n + an + 1
for all n ∈ Z≥0.

a. Show that limn→∞ an = 0.

b. Determine limn→∞ nan.

Solution to Problem I.2. a. It is quite clear by induction that an > 0 for all n. This implies
an+1 < an. So we have a decreasing sequence of real numbers bounded below by 0. Therefore, it is
convergent.



Vienna Mathematics Competition

If we apply the limit to both side of the recurrence, we get

a =
a

a2 + a+ 1

which gives a = 0 as desired.
b. Since an is a decreasing sequence, the sequence 1

an
is increasing and we can apply Césaro-Stolz

to
n
1

an

and get

lim
n→∞

nan = lim
n→∞

n
1

an

= lim
n→∞

1
1

an+1
− 1

an

provided the last limit exists. However, we can easily evaluate it by

lim
n→∞

1
1

an+1
− 1

an

= lim
n→∞

anan+1

an − an+1

= lim
n→∞

an+1(a
2
n + an + 1)an+1

an+1(a2n + an + 1)− an+1

= lim
n→∞

(a2n + an + 1)an+1

a2n + an

= lim
n→∞

an
a2n + an

= lim
n→∞

1

an + 1

= 1.

Problem I.3. We have n coins, each of them having head (H) and tail (T) as possible outcomes
after a toss, but the probabilities may be different for each coin.
We know that the probability of getting an even number of heads after tossing every coin exactly
once is the same as getting an odd number of heads.
Must there be a fair coin among the n coins, i.e. a coin where head and tail come up with probability
1

2
each?

Solution to Problem I.3. Let pi the probability of getting H after a coin toss of coin i, and let
qi = 1− pi be the probability of getting T with the same coin.
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If we look at
∏

1≤i≤n

(qi − pi),

each term after multiplying out parentheses corresponds in absolute value to the appropriate
probability of one of the outcomes for a single toss of all coins. However, the sign is positive if
there is an even number of heads and negative if there is an odd number of heads.
Therefore, this product gives exactly the difference of probabilities of the two outcomes, which is
zero by the problem statement.
If the product is zero, one of the factors must be zero, but qi = pi means exactly that there is a
fair coin.

Problem I.4. Let a be the number of positive integers with σ(τ(n)) = n and let b be the number
of positive integers with τ(σ(n)) = n.
Show that a and b are finite.
Do we have a < b, b < a or a = b ?
(The function τ(k) is the number of positive divisors of an integer k and the function σ(k) is the
sum of positive divisors of an integer k.)

Solution to Problem I.4. We note that τ(n) ≤ 2
√
n since divisors of n come in pairs with one

number in the pair being at most
√
n.

Since the second largest divisor of n is at most n/2, we also have

σ(n) ≤ n+

n/2
∑

k=1

k = n+
n/2(n/2 + 1)

2
.

Since both of these upper bounds are increasing functions of n, we immediately get

σ(τ(n)) ≤ 2
√
n+

√
n(
√
n+ 1)

2
which is easily seen to be smaller than n for n > 25. and

τ(σ(n)) ≤ 2

√

n+
n/2(n/2 + 1)

2

which is easily seen to be smaller than n for n > 10.
Now we can either check the remaining cases or use the following argument to see that a = b:
For any n with σ(τ(n)) = n, we set k = τ(n) and get τ(σ(k)) = τ(n) = k.
This gives an immediate bijection between the two sets of solutions and we get that a = b.
(We have σ(τ(n) = n for n = 1, 3, 4, 12 and τ(σ(n)) for n = 1, 2, 3, 6.)
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Team Competition

Problem T.1. A graph is a set V of vertices together with a set E of edges. Each edge is a set of
two distinct vertices, the endpoints of the edge. We represent the vertices by points in the plane
and the edges by lines connecting the two endpoints.
The distance dist(u, v) between two vertices u and v is the smallest number of edges we need to
traverse to get from u to v. For example, the distance of a vertex to a vertex it shares an edge
with is 1, the distance of a vertex to itself is 0.
For a fixed natural number n ≥ 2, we consider two graphs. The star Sn is the graph with vertices
V = {1, 2, . . . , n} and edges {{1, 2}, {1, 3}, . . . , {1, n}}. The path Pn is the graph with vertices
V = {1, 2, . . . , n} and edges E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.
Show that

det
1≤i,j≤n

(dist(i, j))

gives the same result for both graphs.

Solution to Problem T.1. First solution:

We calculate both determinants explicitly.
The star graph has the distances

dist(i, j) =











0 if i = j,

1 if (i = 1 and j 6= 1) or (j = 1 and i 6= 1),

2 else.

We multiply the first row with 2 and then we divide all columns except the first one by 2.
This shows that the determinant of the star graph is 2n−2 detM where

Mi,j =

{

0 if i = j,

1 if i 6= j.

This determinant can be evaluated in many ways. A quick way is to replace 0 by x, note that x = 1
gives a matrix of rank 1, and x = −(n− 1) gives a matrix of rank n− 1. Since the determinant of
the matrix is a monic polynomial in x of degree n, we get

detM = (0− 1)n−1(0− (−(n− 1)) = (−1)n−1(n− 1).

We conclude that the determinant of the distances of the star graph is

(−1)n−1(n− 1)2n−2.
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For the path, we get that
dist(i, j) = |i− j|.

By replacing rowk with rowk − rowk+1 for k = 1, 2, . . . n−1 and then columnk with columnk − columnk+1

for k = 1, 2, . . . n− 1, we obtain the matrix A with

Aij =











−2 if i = j 6= n,

1 if (i = n and j = n− 1) or (j = n and i = n− 1),

0 else.

If we call the determinant of this matrix dn, we see by expansion with respect to the first row that

dn = (−2)dn−1 + (−1)n−1 · 1 · (−2)n−2.

Since d2 = −1, we can easily prove by induction that

dn = (−1)n−1(n− 1)2n−2,

as desired.
Note that this is a special case of the result that the determinant of the distance matrix is the
same for all trees.

Second solution:

We regard a connected graph G with vertices 1, . . . , n where vertex ℓ is a leaf, i.e. a vertex with a
single edge joining it. Let v be the neighboring vertex.
We see that the distance of ℓ to itself is 0, and any other distance dist(ℓ, k) = dist(v, k) + 1, since
any path from ℓ must pass through v.
This means that the row operation on the distance matrix that replaces rowℓ with rowℓ− rowv

gives us the new first row (−1, 1, . . . , 1).
Now, we do the same for the columns and replace columnℓ with columnℓ − columnv and get first
column (−2, 1, . . . , 1).
Since these operations do not change the determinant and the resulting matrix does not depend
on which vertex v the leaf ℓ was attached to, we see that we can move leaves from one place to
another without changing the determinant.
In particular, we can take the path Pn and starting from n, we move n from its neighbor n− 1 to
the neighbor 1. Then we take the leaf n − 1 and move it to the neighbor 1, and so on, until we
have the star.
Note that this proof works for all trees.
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Problem T.2. Evaluate
∫ π

0

x sin x
√

1 + (sin x)2
dx.

Solution to Problem T.2. We call the integral I and note that by substituting x by π − x, we
get

I =

∫ π

0

(π − x) sin x
√

1 + (sin x)2
dx

and therefore,

2I =

∫ π

0

π sin x
√

1 + (sin x)2
dx =

∫ π

0

π sin x
√

2− (cos x)2
dx = π

∫

1

−1

1√
2− t2

dt,

where the last equality comes from the substitution t = cosx.
Now, we evaluate the remaining integral

π

∫

1

−1

1√
2− t2

dt =
π√
2

∫

1

−1

1
√

1− (t/
√
2)2

dt =
π√
2

∫

3π/4

π/4

√
2 sin u

√

1− (cosu)2
du = π

∫

3π/4

π/4

sin u

sin u
du = π2/2,

where we use the substitution t =
√
2 cosu.

Therefore, I = π2/4.

Problem T.3. Let en be the number of subsets of {1, 2, . . . , 2n} that contain more even than odd
elements.
Determine all n ≥ 1 such that en is odd.

Solution to Problem T.3. First solution:

We have

2en = 2
∑

0≤k<l≤n

(

n

k

)(

n

l

)

=
∑

0≤k,l≤n

(

n

k

)(

n

l

)

−
n

∑

k=0

(

n

k

)2

= 2n · 2n −
(

2n

n

)

,

using the binomial theorem and the Vandermonde identity.
Therefore, we have

en = 22n−1 − 1

2

(

2n

n

)

= 22n−1 −
(

2n− 1

n− 1

)

≡
(

2n− 1

n− 1

)

(mod 2).

The theorem of Lucas tells us this is odd if and only if adding n and n−1 in the binary representation
has no carries. This is only possible if the highest digit of n changes when 1 is subtracted which is
the case exactly for powers of 2 who have the desired property.
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Second solution:

Let n = 2k + 1 be odd.
We partition even and odd numbers up to n into k pairs and a remaining number, i.e.

(1, 3), (5, 7), . . . , 2n− 1, (2, 4), (6, 8), . . . , 2n.

The subsets containing 1, but not 3 are in bijection with the subsets containing 3, but not 1, since
we just replace 1 with 3.
This bijection does not change the number of even and odd elements, so these subsets contribute
an even number to en and do not change the parity of en.
Therefore, it is enough to consider subsets that contain both or none of 1 and 3.
This argument can be repeated for all the pairs, since the bijections also work on the restricted
sets of subsets.
We conclude that it is enough to count the subsets where each of the 2k pairs occurs together or
not at all. If there are more even pairs than odd pairs, the single odd number cannot change that
there are more even numbers. Therefore, the single numbers can be freely chosen to be included
or excluded which gives a factor of 4, and we have again an even contribution to en.
If there are less even than odd pairs, than the single even number cannot change that there are
more odd than even numbers and there is no contribution to en.
The remaining case are the subsets with equally many even and odd pairs. To get a subset with
more even numbers, we have to choose the single even number and exclude the single odd number.
For each cardinality ℓ, we have to count the square of the number of ℓ-element subsets of k elements.
However, we are only interested in the parity which does not change if we drop the square, so we
just get the sum of all subsets of k elements which is 2k, an even number for k > 0 and an odd
number for k = 0.
Therefore, en is even for n odd with n > 1 while e1 is odd.
Now, we consider even n = 2k.
As before, we partition even and odd numbers into pairs. However, this time there are no remaining
numbers and we have k even pairs and k odd pairs. With the same argument as before, it is enough
to consider subsets where each pair occurs together or not at all.
This gives for even n that en ≡ en/2 mod 2.
We conclude that for n = 2su with u odd, we have en ≡ eu mod 2.
Therefore, en is odd if and only if n is a power of 2.

Problem T.4. Let (an)n be the sequence with a1 = 2 and

an+1 = a3n − a2n + 1.
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a. Show that the sequence does not contain a perfect square.

b. Show that the sequence does not contain a perfect cube.

Solution to Problem T.4. a. If we look at the sequence modulo 3, we see that all elements
of the sequence are 2 modulo 3 by induction. Therefore, they cannot be a square.

Alternatively, we can see that an+1 = (a1a2 · · · · · an)2 + 1 and therefore, cannot be a square,
since the sequence is increasing and does not contain 0.

b. It is easy to see that an+1 is between (an − 1)3 and a3n, and therefore cannot be a cube.

Problem T.5. For each Q ∈ R[x], we define the vector space

VQ = {P ∈ R[x] : degP ≤ 2024 and P (Q(a)) = P (a) for all a ∈ R} .

What are all the possible values of dimVQ as Q runs through all polynomials?

Solution to Problem T.5. If Q is constant, we obtain that P has to be constant, so dimVQ = 1.
Constant P are clearly always elements of VQ.
If degP = d ≥ 1 and degQ = e ≥ 1, we get de = d which implies e = 1. It is enough to consider
monic polynomials P and we see from the leading term that the leading coefficient of Q must be
±1.
Case 1: Q(x) = x
Clearly, every P is a solution, so dimVQ = 2025.
Case 2: Q(x) = x+ c with c 6= 0.
Then we get P (a) = P (a+ c) = P (a+ 2c) = . . . . Since P takes the same value infinitely often, it
has to be constant, so there are only the constant polynomials in VQ in this case and the dimension
is 1.
Case 3: Q(x) = −x+ c
We get P (−a+ c) = P (a) for all a. Now set x = a− c/2 and get P (−(x+ c/2) + c) = P (x+ c/2)
for all x which gives P (−x+ c/2) = P (x+ c/2).
This means that R(x) = P (x+ c/2) is an even polynomial, so only terms of even degree can occur.
The dimension is clearly 2024/2 + 1 = 1013
Therefore, we get

dimVQ =











1 if Q constant or Q(x) = x+ c with c 6= 0 or degQ > 1,

1013 if Q(x) = −x+ c

2025 if Q(x) = x.



Vienna Mathematics Competition

Problem T.6. On a blackboard, we have the numbers x1, . . . , xn with 0 < xi < 1/n. In each step,
we choose two numbers a and b and replace them with the number a

√
1− b2 + b

√
1− a2.

After n − 1 steps, we are left with a single number. Show that the number does not depend on
which two numbers we choose in each step.

Solution to Problem T.6. We see that for a = sinα and b = sin β with 0 < α, β < π/2, the
operation returns

a
√
1− b2 + b

√
1− a2 = sinα cos β + sin β cosα = sin(α + β).

If we set xi = sinαi, the last number is clearly sin(α1 + α2 + · · · + αn), because the condition
xi < 1/n implies that αi < π/(2n), so all intermediate sums are smaller than π/2. One way to
show the inequality is to use the inequality sin x > x− x3/3! for x > 0.

Problem T.7. Consider functions f : Z≥0 → Z≥0 such that f(f(n)) ≤ f(n + 1) − f(n) for all
n ∈ Z≥0.
What is the maximal value that f(2024) can take?

Solution to Problem T.7. The function f is montonously increasing because f(n+1)− f(n) ≥
f(f(n)) ≥ 0. If the function f is the zero function, we have a solution.
From now on, we assume that there is a smallest n0 with f(n0) > 0.
Case 1: We have f(n) < n0 for all n ∈ N.
In particular, n0 > 0 which implies f(0) = 0. Also, we always have f(f(n)) = 0 and the inequality
is satisfied if and only if the function is monotonously increasing. All such functions are solutions.
Case 2: There exists an n1 such that f(n1) ≥ n0.
For n ≥ n1, we get f(n + 1) − f(n) ≥ f(f(n)) ≥ f(f(n1)) ≥ f(n0) = c > 0 which implies
f(n+ 1) ≥ f(n) + c. Therefore, the function f admits arbitrary large values and is monotonously
increasing and both these properties are also true for f(f(n)) and we can choose n1 such that
c > 1.
This implies f(n) ≥ cn + d with d = f(n1)− cn1 ∈ Z for all n ≥ n1. But we also have f(f(n)) ≤
f(n+ 1)− f(n) < f(n+ 1) and by monotony f(n) ≤ n+ 1. Therefore, we have cn+ d ≤ n+ 1 for
sufficiently large n. But this inequality cannot be true for large n because of c > 1, so there are no
solutions in this case.
In summary, the solutions are the zero function and all monotonously increasing functions with
f(0) = 0 that are bounded by the last argument where they take the value 0.
We conclude that for f(2024) to be larger than 0, the number 2023 is the largest possible last
argument to be 0, and the function

f(n) =

{

0 if n ≤ 2023,

2023 if n ≥ 2024
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attains this maximum.

Problem T.8. Let s(x) = minn∈Z |x− n| be the distance of x to the nearest integer.
Show that the function f : [0, 1] → R defined by

f(x) =
∞
∑

n=0

s(2nx)

2n

has a maximum.
Determine the maximum.

Solution to Problem T.8. It is possible to show that the Takagi function is continuous by noting
that it is a sum of continuous functions and converges uniformly.
However, this is not necessary because we can determine the maximum explicitly.
We are interested in combining two consecutive terms, therefore, we look at the function

t(x) = s(x) +
s(2x)

2
=



















x+ (2x)/2 = 2x if x ∈ [0, 1/4]

x+ (1− 2x)/2 = 1/2 if x ∈ [1/4, 2/4]

(1− x) + (2x− 1)/2 = 1/2 if x ∈ [2/4, 3/4]

(1− x) + (2− 2x)/2 = 2(1− x) if x ∈ [3/4, 4/4]

The maximum of t(x) is clearly 1/2, and

s(22kx)/22k + s(22k+1x)/22k+1 = t(4kx)/4k

has the maximum 1

2

1

4k
.

Therefore,

f(x) ≤ 1

2

∞
∑

k=0

1

4k
=

1

2
· 1

1− 1

4

=
1

2
· 4
3
=

2

3
.

The upper bound is attained if 4kx ∈ [1/4, 3/4] for all k, but this just means choosing the digits
of x in basis 4 to always be 1 or 2. For example

x = (0.1111111 . . . )4 =
1

3

attains the maximum, but there are uncountably many x where the maximum is attained.


